Cortana Intelligence Suite Workshop – Foundations And Microsoft R for the Architect

By for January 13, 2017

153 views
13 launches


Report Abuse
In this workshop, you’ll cover a series of modules that guide you from understanding an analytics workload, the Cortana Intelligence Suite Process, the foundations of data transfer and storage, data source documentation, storage and processing using various tools. Location: London, UK. March 6 - 8, 2017.
# About the Course Welcome to the Cortana Intelligence Suite workshop delivered by your Microsoft Data Science team. In this workshop, you’ll cover a series of modules that guide you from understanding an analytics workload, the Cortana Intelligence Suite Process, the foundations of data transfer and storage, data source documentation, storage and processing using various tools. You’ll also learn how to work through a real-world scenario using the Cortana Intelligence Suite tools, including the Microsoft Azure Portal, PowerShell, and Visual Studio, among others. This course is designed to take approximately three days. You’ll also cover a series of modules that guide you from a review of the R programming environment, the Cortana Intelligence Suite Process, the Cortana Intelligence Suite Platform, to the Microsoft R platforms including: Microsoft Open R, the Microsoft R Client, Microsoft R Server, SQL Server with R Services, R in Azure ML, and HDInsight with R. Final lab is an SQL Server R Services solution, but extrapolates to any Microsoft R platform. # Skills Taught At the end of the course you will have acquired the following skills: * Understand the CIS Process (General level), Understand CIS Components (General Level), Set up and configure the development environment * Understand how to source and vet proper data, Understand feature selection, Understand Azure Storage Options, Use various methods to ingest data into Azure Storage, Examine data stored in Azure Storage, Use various tools to explore data * Understand ADF and its constructs, Implement an ADF Pipeline referencing Data Sources and with various Activities including on-demand HDInsight Clusters, Understand the HIVE language and how it is used * Understand how to use Azure ML and how experiments are created, Understand how MRS can be used to perform Machine Learning experiments, Use ADF to schedule Azure ML Activities * Understand how to evaluate the efficacy and performance of an Azure ML experiment, Understand how to evaluate the efficacy and performance of an MSR ML experiment, Access and show data from Azure Storage, Access, and Query Azure SQL DB * Understand how to publish an Azure ML API, Understand the access methods of Azure Storage and Intelligent Processing, Understand the options to send a HIVE query to an HDI system, Use Power BI to query the results of a solution and create reports in Power BI Desktop, Power BI Service, and Power BI in Microsoft Excel * Understand when to use each component within CIS * Basic R coding * Choose, install, configure and use the proper R environment for a given solution * Connect to a Microsoft R platform from various client tools, run code locally and operationalize on server * Understand how to plan, deploy, manage, tune and monitor a Microsoft R solution * Deploy code to a Microsoft R Server, including SQL Server # Prerequisites There are a few things you will need in order to properly follow the course materials: * There are a few things you need prior to coming to class: * A subscription to Microsoft Azure (this may be provided through your company or as part of your invitation – you must have this enabled prior to class – you will be using Azure throughout the course, for all labs, work, and exercises) * You can use your MSDN subscription – https://azure.microsoft.com/en-us/pricing/member-offers/msdn-benefits/ * Your employer may provide Azure resources to you, but make sure you check to see if you can deploy assets and that they know you’ll be using their subscription in the class. * Optionally, you may receive instructions in your class invitation. * We’ll be using the Data Science Virtual Machine in Azure for the course. It has all of the tools you will need to work with the materials. Make sure you’re able to use the Remote Desktop Protocol (RDP) from your system to be able to work through the labs. * If you would also like to work with some of the tools locally (you still need an Azure subscription for this class), you can optionally obtain: * A laptop that you can install software on * Visual Studio installed – the Community Edition (free) is acceptable – Version 2015 preferable ( https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx) * Azure SDK and Command-line Tools installed ( https://azure.microsoft.com/en-us/downloads/ ) * Azure Storage Explorer ( http://go.microsoft.com/fwlink/?linkid=698844&clcid=0x409) * Power BI Desktop Installed ( https://powerbi.microsoft.com/en-us/desktop/ )A background in data technologies, such as working with Relational and Non-Relational data processing systems * Install the Microsoft R Client: http://aka.ms/rclient/download with the R tools for Visual Studio * It’s also a good idea to have a general level of predictive and classification Statistics, and a basic understanding of Machine Learning # Technologies Covered * Cortana Intelligence * R Language * The Data Science Process, Azure Portal, ADC Interface, Visual Studio Interface (and RTVS), Power BI Interface * Azure Machine Learning Interface, Azure PowerShell, Azure Storage Explorer * Azure Data Catalog, Azure Storage, Techniques for discovery * Azure Data Factory, HDInsight * Azure Machine Learning, Microsoft R Server overview, Azure Data Factory * Azure Machine Learning, Microsoft R Server overview, Azure Data Factory, Business Validation, SQL DB, Azure Storage * Azure Data Storage, SQL DB, Azure Machine Learning API, Cognitive Services API, HIVE, Power BI * Cortana Intelligence Process, Cortana Intelligence Suite Platform * R (Introduction and basic coding only) * The Microsoft R ecosystem * SQL Server Stored Procedures, R Tools for Visual Studio, Azure ML * R Tools for Visual Studio, other R clients demonstrated * The Data Science Process as it is used in the Microsoft R Platform - SQL Server R Services as an example